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1. Introduction 

As processors get smaller and faster, they become to more vulnerable to transient errors. Minor 
imperfections in a chip, cosmic rays, or similar phenomenon can cause transistors to occasionally 
produce wrong results. This does not mean that we cannot use advanced processors because we 
are afraid of those errors. We can detect those transient errors more stable processors and execute 
instructions again if an error occurs. If the probability of errors are very low, the overhead of 
additional verifying processors won't be high. DIVA[1] showed that the idea is feasible. DIVA 
has a second, slower processor which verifies the output of each individual instruction. We used 
the idea that we can verify groups of instructions. It is implemented as a dual-processor system 
with SimpleScalar[2]. A proper system could produce executable programs with no intervention 
of an operator. Currently, multiple compiler passes and human intervention is required. Our 
implementation works on a small scale. We believe that the verifying architecture can be applied 
to a real system with modifications.  

SimpleScalar is a processor simulation tool set developed by the University of Wisconsin. It 
simulates various features of modern processors, like caches, a TLB, and branch prediction. The 
development environment includes a compiler (gcc) and library so researches can develop or 
port programs. SimpleScalar is easy to extend. Since it was first released in 1996, SimpleScalar 
has had many features added. The most recent extension simulates multiprocessors, which is 
very useful for implementing a main processor and its verifying processor.  

Proof-carrying code[3] is a system by which a proof of safety accompanies executable code. 
Code is annotated with invariants that, if they hold, prove the code to be safe. Workstations can 
verify that untrusted code meets safety restrictions by analyzing the proof with the code. Our 
idea is similar to proof -carrying code in that executable code is annotated with invariants which 
must hold at that point in the code.  The processor executes instructions, and reexecutes 
instructions when an error causes an invariant to be false.  

2. Our work 

2.1. Assumptions 

As processors get faster and smaller, it is more prone to errors. A processor can have transient 
errors as well as permanent errors. We are only going to address the case where the processor has 
transient errors. For example, an alpha particle can cause a malfunction in a processor circuit. 
However, this does not mean that we cannot use the processor. Generally, we assume the 
processor operates correctly most of the time, and only fails on occasion. Therefore, the 
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processor can accomplish its tasks correctly if it is verified by a more stable processor. As the 
probability of an transient error is low, the verifying processor doesn't need to verify all each 
instruction. The verifying processor will only execute a small set of instructions: the 
invariant.  This will catch errors with high probability. If the invariant doesn't hold, the main 
processor executes the instructions again. The overhead of reexecuting instructions is not 
problematic, considering that errors occur rarely.  

2.2. System Structure 

We implemented our idea as two communicating processors. In SimpleScalar, processes 
communicate by passing messages (shared memory is not yet implemented). The main processor 
executes instructions and then sends the verifying processor all its registers. If the verifying 
processor confirms that the execution was correct, the main processor continues to execute 
instructions. If not, the main processor loads the old register values back and reexecutes its 
instructions. This mechanism is shown in Fig. 1.  

 

Two communicating processors are specified in a script such as that in Figure 2.  
   

cluster jeckel {  
   
       processor main outorder 1 {  
                -mem:lat 40 1  
                -command my_command  
                -btrace main.trace  
   
                input { min[0] }  
                output { mout[0] }  
        }  
   
      processor verifier outorder 1 {  
                -mem:lat 40 1  
                -command my_verifier  
                -btrace verifier.trace  
   
               input { vin[0] }  
                output { vout[0] }  
        }  
   
}  
   
jeckel.main.mout[0]=>jeckel.verifier.vin[0];  
jeckel.verifier.vout[0]=>jeckel.main.min[0]; 

Fig. 2: Processor configuration in SimpleScalar simulator 
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The processor configuration file specifies the processor and message queue names and maps the 
queues between processors. In the example above, the processor main sends messages to 
message queue mout and receives messages from min. The process running on main was loaded 
from the object file my_command. The processor verifier sends messages to vout and receives 
from vin with object file my_verifier. Any messages written to mout will arrive in vin and any 
written to vout will arrive in min. The two processors are enclosed in a cluster jeckel.  In the 
future, SimpleScalar will be modified so processors within a single cluster will share memory. 
As that is not currently implemented, clusters are useless.  

2.3. Writing a program for SimpleScalar  

Since gcc can not handle everything we want it to do, we must compile to assembly language 
and intervene at that point. gcc generates assembly code when it is given the -S option. After we 
change the assembly code for our purposes, we compile the modified assembly code to object 
code.  

In SimpleScalar, a process sends and receives messages with the system calls qread and qwrite. 
Since they are not fully integrated in SimpleScalar at this time, we had to insert the syscall 
instruction and pass the arguments by explicitly filling registers. Figures 3 and 4 shows the code 
to write and read messages from a queue.  

Two communicating processors are specified in a script such as that in Figure 2.  
   

        addiu   $2,$0,258       # Set register 2 to 258 (system call number) 
        la      $4,MQO          # Set register 4 to the queue name  
        subu    $5,$16,4        # Set register 5 to the queue message  
        move    $6,$0           # Set register 6 to queue index   
        syscall                 # make system call 

Fig. 3: Assembly code to write a message to a queue 
$L2:  
        addiu   $2,$0,259       # Set reg 2 to 259 (system call number)  
        la      $4,MQI          # Set reg 4 to the queue name  
        addu    $5,$sp,16       # Set reg 5 to the queue message  
        move    $6,$0           # Set reg 6 to queue index  
        syscall                 # make system call  
        bne     $7,$0,$L2       # reg 7 is 0 if a message exists, otherwise  
                                # it is 1. We loop until there is a message. 

Fig. 4: Assembly code to read a message from a queue 

The queue name is a string where the first byte is a length byte; the length excludes the 
terminating null byte. The queue message has its length in the first four bytes followed by the 
contents. As SimpleScalar is a little-endian machine, the least signif icant byte of the length is the 
first byte.  

Figure 5 contains an example.  
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MQI:  
       .ascii "\003min"  
MQO:  
       .ascii "\004mout"  
msg:  
       .ascii "\006\000\000\000cool\n\000" 

Fig. 5: Sample queue names and message 

2.4. Programming interface for C 

As assembly language programming is error prone and unproductive, we wrote a interface for C 
with macros and inline assembly. These functions correctly map arguments to registers.  
   
#define qread(messagelength,queuename,message,queuenumber,queueerror)     \ 
    ({asm volatile("addiu\t$2,$0,259":::"2");                             \ 
      messagelength = syscall(queuename,message,queuenumber,0);           \ 
      asm volatile("move\t%0,$7":"=g" (queueerror):);})   
   
#define qwrite(queuename,message,queuenumber,queueerror)       \  
    ({asm volatile("addiu\t$2,$0,258":::"2");                  \  
      syscall(queuename,message,queuenumber,0);                \  
      asm volatile("move\t%0,$7":"=g" (queueerror):);})  

Fig. 6: C interface for queue read and write 

syscall is translated to jal syscall in the assembly file. Since syscall is the proper 
assembly command, a correction must be made. The following Perl script make the modification.  
   

#!/usr/bin/perl  
while(<>) {   
    s/jal\tsyscall/syscall/;  
    print;  
} 

Fig. 7: Perl script to change syscall instruction 

After running the Perl script, we can compile the assembly code without further modification.  

2.5. Multiprocessor SimpleScalar Program in C 

Writing a multiprocessor program is not so difficult if we use the C interface as shown in the 
following examples.  
   
#include "queue_calls.h"  
   
long regs[32];  
char msg[]="\006\000\000\000cool\n";  
long nullmsg[]={0};  
char MQI[]="\003min";  
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char MQO[]="\004mout";  
   
int main(void)  
{  
  int i,error,length;  
  for(i = 0; i < 32; i++) {   
    regs[i]=0;  
  }  
  qwrite(MQO,msg,0,error);  
  do {  
    qread(length,MQI,regs,0,error);  
  } while(error);  
  if(regs[1])  
    printf("1\n");  
  else  
    printf("0\n");  
  qwrite(MQO,nullmsg,0,error);  
  printf("done\n");  
} 

Fig. 8: A program running on the main processor 
#include "queue_calls.h"  
   
long regs[32];  
char VQI[]="\004vin";  
char VQO[]="\005vout";  
long sucmsg[]={1, 1};  
   
int main(void)  
{  
  long i, length, error;  
  for(;;) {   
    do {  
      qread(length,VQI,regs,0,error); 
    } while(error);  
    if(length == 0)  
      break;  
    printf(regs+1);  
    qwrite(VQO,sucmsg,0,error);  
    printf("1\n");  
  }  
} 

Fig. 9: A program on the other processor  

In the two communicating programs, the queue reads and writes should match each other. Also, 
the queue read should wait until there is a message in the queue.  

2.6. Passing invariants 

Up to now, we have just shown programs that send and receive data. But how can a main 
processor send the invariant condition to the verifying processor? We propose two methods.  
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In the first method, the main program sends the invariant instructions as a message. This is 
possible because we can enclose the invariant instructions with .rdata and .text directives and 
insert the length of the message after .rdata.   We load $I1 as our message, and so the 
instructions are sent. The verifying processor then can load its registers with those sent by the 
main processor, and do a jal to the message that was sent. We can ensure that the invariant code 
always leaves its result in register 4.  Then we can check that register and reply to the main 
processor with the result.  
   

$I1:  
        .rdata  
        .word   48  
        addu    $2,$17,$18 
        rem     $3,$2,$16  
        seq     $3,$3,$5  
        slt     $4,$0,$19  
        and     $4,$4,$3  
        j       $31  
        .text 

Fig. 10: Invariant code 

In the second method, we generate a verifying program specific to the main program. When we 
run the main program we just send the the contents of registers and the number designating 
which invariant we are at. The verifying processor takes the invariant number, calculates the 
result of the invariant, and replies. We use the assembly code for the main program to deduce the 
meaning of the various registers. We could then write straight C code for the verifier.  
   

#include "queue_calls.h"  
   
long regs[2][34];  
char VQI[]="\004vin";  
char VQO[]="\005vout";  
long sucmsg[]={4, 1};  
   
int main(void)  
{  
  long i, length, error, currregs=0;  
  for(;;) {   
    do {  
      currregs = 1 - currregs;  
      qread(length,VQI,regs[currregs],0,error);  
    } while(error);  
    if(length == 0)  
      break;  
    switch(regs[currregs][1]) {   
    case 1:  
      qwrite(VQO,sucmsg,0,error);  
      printf("1:1\n");  
      break;  
    case 2:  
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      if(regs[currregs][5] == 55) {   
        qwrite(VQO,sucmsg,0,error);  
        printf("2:1\n");  
      }  
      else {  
        regs[1 - currregs][1] = 0;  
        qwrite(VQO,regs[1 - currregs],0,error); 
        printf("2:0\n");  
      }  
      break;  
    default:  
      regs[1 - currregs][1] = 0;  
      qwrite(VQO,regs[1 - currregs],0,error);  
      printf("%ld:0\n",regs[1]);  
      break;  
    }  
  }  
} 

Fig. 11: A specific verifier 

A bit of a problem exists for the first method. The problem is that the verifying program receives 
invariant instructions as data. To then attempt to execute those instructions would bring up the 
same issues as self-modifying code. To use this method, we would be required to flush caches, 
and in general be careful with what we were doing. We decided that the pitfalls of this method 
would make it more difficult to implement. Therefore, we chose the second method.  

2.7. Using invariants 

We maintain two sets of registers in the verifier, so that we can return the old register bank to the 
main processor in the event of an error.  Also, given the implementation, not all the registers 
must be sent to the verifier, but only those that are required for the invariant and possible 
rollback.  

At this point, setting up the invariant in the verifier requires careful inspection of the assembly 
code in the main program.  Also, heavy tweaking of the main code is needed to get registers to 
have values we want and to have the message filled and send.  We hope to be able to automate 
much of the code generation for invariant sending and register copying.  

In order to get the best performance in the main processor, the main processor should not check 
for the reply from the verifying processor immediately after sending the invariant 
message.  Rather, it should continue execution until it has reached the time for sending another 
invariant message.  By this time, the reply should have arrived back, and the main processor 
need not wait.  Then the read can be done, and the roolback if necessary.   If no rollback is 
necessary, then the new invariant is sent, and execution continues.  

3. Conclusion 

3.1. Future work 
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Although our program showed how two communicating processors can verify execution, more 
work is needed to apply this to a real application.  

First, additional logic is needed.  We ignore floating point registers, since they were never used. 
As real applications have both integer and floating point instructions, a processor needs to 
recover floating point registers. We can extend our idea to floating point instructions with little 
difficulty. Also, memory recover logic is necessary. Small programs may be able to do all their 
work in registers, but any reasonable program goes beyond that. This can be done by keeping a 
memory write buffer for written memory values. On each successful evaluation of the invariants, 
the memory values in the write buffer are retired to the memory. If an invariants does not hold, 
then the memory values are discarded. There can be a coherence problem when there is more 
than one main processor, but techniques applied to cache coherence could probably be applied 
here. Maintaining the write buffer seems reasonable in a single main processor architecture with 
message passing, because the memory values are only refered to by the single main processor.  

Second, we need to write a program that generates the verifying program automatically. We 
generated the verifying program in an ad hoc manner, which is unproductive and error prone, as 
well as inelegant. But we believe that this can be done without to much difficulty compared to 
memory value recovery, which will require in-depth modification of SimpleScalar.  

3.2. Tidbits 

We had some interesting tidbits in this project.  

First, the message passing mechanism took a little time to understand. Two communicating 
programs do not operate correctly if the writes and reads do not match well. Further, the queue 
read code should be written so that it does not assume that there is a message in the 
queue.  Originally, we had assumed that qread was a blocking read.  

Second, we found we could extend the C program with the asm directive so that the program can 
be written without modifying the intermediate assembly file by hand. Combined with a script to 
modify the assembly code, this technique helped to speed writing programs. However, the asm 
directive may cause serious side effects when used incorrectly.  

Third, we found several bugs in SimpleScalar. Some them were siginificant and caused our 
programs to not operate. One caused early termination of the simulator. Another was a large 
memory leak which caused segmentation faults. We could execute the programs correctly after 
we received revised versions of SimpleScalar.  At this point, there is still an outstanding memory 
leak in the simulator.  

3.3. Thoughts 

This seems like an energy intensive method of verification. At the level we are doing work, there 
are more efficeint ways, such as DIVA, or dual processors, with a rollback whenever they don't 
agree. Our method could be useful in a couple ways. One is if efficeincy is not important, like 
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computational fabarics.  Another is if there were multiple main processors, to amortize the cost 
of having a verifier processor.  

Next, invariants are not easy to come up with. The invariants reflect the structure of a program 
and are difficult to generate automatically. With proof-carrying code, much of the proof is 
inherent in the code. The choice of a safe language provides most of the proof of safety as part of 
the code itself. Even in proof-carrying code, unusual conditions were written by hand. We also 
wrote invariants by hand, but we tried to minimize human intervention as much as we could. A 
way must be come up with to lower the amount of human thought needed for invariants.  

4. Summary 

The decreasing feature size of processors makes it necessary to verify the execution of a 
processor. There have been some efforts to address the problem, like DIVA. We approached this 
problem by simulating a multiprocessor system in SimpleScalar. We configured the simulator 
and wrote application programs running on it. Although our applications were small scale, they 
were sufficient to show that a processor can execute instructions and be verified by another 
processor. We expect our idea can be applied to a real application if we can rollback memory 
values.  
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