
Verifying Architecture
Jaein Jeong

Johnathon Jamison
{jaein,jjamison}@cs.berkeley.edu

1. Introduction

As processors get smaller and faster, they become to more vulnerable to transient errors. Minor
imperfections in a chip, cosmic rays, or similar phenomenon can cause transistors to occasionally
produce wrong results. This does not mean that we cannot use advanced processors because we
are afraid of those errors. We can detect those transient errors more stable processors and execute
instructions again if an error occurs. If the probability of errors are very low, the overhead of
additional verifying processors won't be high. DIVA[1] showed that the idea is feasible. DIVA
has a second, slower processor which verifies the output of each individual instruction. We used
the idea that we can verify groups of instructions. It is implemented as a dual-processor system
with SimpleScalar[2]. A proper system could produce executable programs with no intervention
of an operator. Currently, multiple compiler passes and human intervention is required. Our
implementation works on a small scale. We believe that the verifying architecture can be applied
to a real system with modifications.

SimpleScalar is a processor simulation tool set developed by the University of Wisconsin. It
simulates various features of modern processors, like caches, a TLB, and branch prediction. The
development environment includes a compiler (gcc) and library so researches can develop or
port programs. SimpleScalar is easy to extend. Since it was first released in 1996, SimpleScalar
has had many features added. The most recent extension simulates multiprocessors, which is
very useful for implementing a main processor and its verifying processor.

Proof-carrying code[3] is a system by which a proof of safety accompanies executable code.
Code is annotated with invariants that, if they hold, prove the code to be safe. Workstations can
verify that untrusted code meets safety restrictions by analyzing the proof with the code. Our
idea is similar to proof -carrying code in that executable code is annotated with invariants which
must hold at that point in the code. The processor executes instructions, and reexecutes
instructions when an error causes an invariant to be false.

2. Our work

2.1. Assumptions

As processors get faster and smaller, it is more prone to errors. A processor can have transient
errors as well as permanent errors. We are only going to address the case where the processor has
transient errors. For example, an alpha particle can cause a malfunction in a processor circuit.
However, this does not mean that we cannot use the processor. Generally, we assume the
processor operates correctly most of the time, and only fails on occasion. Therefore, the

2

processor can accomplish its tasks correctly if it is verified by a more stable processor. As the
probability of an transient error is low, the verifying processor doesn't need to verify all each
instruction. The verifying processor will only execute a small set of instructions: the
invariant. This will catch errors with high probability. If the invariant doesn't hold, the main
processor executes the instructions again. The overhead of reexecuting instructions is not
problematic, considering that errors occur rarely.

2.2. System Structure

We implemented our idea as two communicating processors. In SimpleScalar, processes
communicate by passing messages (shared memory is not yet implemented). The main processor
executes instructions and then sends the verifying processor all its registers. If the verifying
processor confirms that the execution was correct, the main processor continues to execute
instructions. If not, the main processor loads the old register values back and reexecutes its
instructions. This mechanism is shown in Fig. 1.

Two communicating processors are specified in a script such as that in Figure 2.

cluster jeckel {

 processor main outorder 1 {
 -mem:lat 40 1
 -command my_command
 -btrace main.trace

 input { min[0] }
 output { mout[0] }
 }

 processor verifier outorder 1 {
 -mem:lat 40 1
 -command my_verifier
 -btrace verifier.trace

 input { vin[0] }
 output { vout[0] }
 }

}

jeckel.main.mout[0]=>jeckel.verifier.vin[0];
jeckel.verifier.vout[0]=>jeckel.main.min[0];

Fig. 2: Processor configuration in SimpleScalar simulator

3

The processor configuration file specifies the processor and message queue names and maps the
queues between processors. In the example above, the processor main sends messages to
message queue mout and receives messages from min. The process running on main was loaded
from the object file my_command. The processor verifier sends messages to vout and receives
from vin with object file my_verifier. Any messages written to mout will arrive in vin and any
written to vout will arrive in min. The two processors are enclosed in a cluster jeckel. In the
future, SimpleScalar will be modified so processors within a single cluster will share memory.
As that is not currently implemented, clusters are useless.

2.3. Writing a program for SimpleScalar

Since gcc can not handle everything we want it to do, we must compile to assembly language
and intervene at that point. gcc generates assembly code when it is given the -S option. After we
change the assembly code for our purposes, we compile the modified assembly code to object
code.

In SimpleScalar, a process sends and receives messages with the system calls qread and qwrite.
Since they are not fully integrated in SimpleScalar at this time, we had to insert the syscall
instruction and pass the arguments by explicitly filling registers. Figures 3 and 4 shows the code
to write and read messages from a queue.

Two communicating processors are specified in a script such as that in Figure 2.

 addiu $2,$0,258 # Set register 2 to 258 (system call number)
 la $4,MQO # Set register 4 to the queue name
 subu $5,$16,4 # Set register 5 to the queue message
 move $6,$0 # Set register 6 to queue index
 syscall # make system call

Fig. 3: Assembly code to write a message to a queue
$L2:
 addiu $2,$0,259 # Set reg 2 to 259 (system call number)
 la $4,MQI # Set reg 4 to the queue name
 addu $5,$sp,16 # Set reg 5 to the queue message
 move $6,$0 # Set reg 6 to queue index
 syscall # make system call
 bne $7,$0,$L2 # reg 7 is 0 if a message exists, otherwise
 # it is 1. We loop until there is a message.

Fig. 4: Assembly code to read a message from a queue

The queue name is a string where the first byte is a length byte; the length excludes the
terminating null byte. The queue message has its length in the first four bytes followed by the
contents. As SimpleScalar is a little-endian machine, the least signif icant byte of the length is the
first byte.

Figure 5 contains an example.

4

MQI:
 .ascii "\003min"
MQO:
 .ascii "\004mout"
msg:
 .ascii "\006\000\000\000cool\n\000"

Fig. 5: Sample queue names and message

2.4. Programming interface for C

As assembly language programming is error prone and unproductive, we wrote a interface for C
with macros and inline assembly. These functions correctly map arguments to registers.

#define qread(messagelength,queuename,message,queuenumber,queueerror) \
 ({asm volatile("addiu\t$2,$0,259":::"2"); \
 messagelength = syscall(queuename,message,queuenumber,0); \
 asm volatile("move\t%0,$7":"=g" (queueerror):);})

#define qwrite(queuename,message,queuenumber,queueerror) \
 ({asm volatile("addiu\t$2,$0,258":::"2"); \
 syscall(queuename,message,queuenumber,0); \
 asm volatile("move\t%0,$7":"=g" (queueerror):);})

Fig. 6: C interface for queue read and write

syscall is translated to jal syscall in the assembly file. Since syscall is the proper
assembly command, a correction must be made. The following Perl script make the modification.

#!/usr/bin/perl
while(<>) {
 s/jal\tsyscall/syscall/;
 print;
}

Fig. 7: Perl script to change syscall instruction

After running the Perl script, we can compile the assembly code without further modification.

2.5. Multiprocessor SimpleScalar Program in C

Writing a multiprocessor program is not so difficult if we use the C interface as shown in the
following examples.

#include "queue_calls.h"

long regs[32];
char msg[]="\006\000\000\000cool\n";
long nullmsg[]={0};
char MQI[]="\003min";

5

char MQO[]="\004mout";

int main(void)
{
 int i,error,length;
 for(i = 0; i < 32; i++) {
 regs[i]=0;
 }
 qwrite(MQO,msg,0,error);
 do {
 qread(length,MQI,regs,0,error);
 } while(error);
 if(regs[1])
 printf("1\n");
 else
 printf("0\n");
 qwrite(MQO,nullmsg,0,error);
 printf("done\n");
}

Fig. 8: A program running on the main processor
#include "queue_calls.h"

long regs[32];
char VQI[]="\004vin";
char VQO[]="\005vout";
long sucmsg[]={1, 1};

int main(void)
{
 long i, length, error;
 for(;;) {
 do {
 qread(length,VQI,regs,0,error);
 } while(error);
 if(length == 0)
 break;
 printf(regs+1);
 qwrite(VQO,sucmsg,0,error);
 printf("1\n");
 }
}

Fig. 9: A program on the other processor

In the two communicating programs, the queue reads and writes should match each other. Also,
the queue read should wait until there is a message in the queue.

2.6. Passing invariants

Up to now, we have just shown programs that send and receive data. But how can a main
processor send the invariant condition to the verifying processor? We propose two methods.

6

In the first method, the main program sends the invariant instructions as a message. This is
possible because we can enclose the invariant instructions with .rdata and .text directives and
insert the length of the message after .rdata. We load $I1 as our message, and so the
instructions are sent. The verifying processor then can load its registers with those sent by the
main processor, and do a jal to the message that was sent. We can ensure that the invariant code
always leaves its result in register 4. Then we can check that register and reply to the main
processor with the result.

$I1:
 .rdata
 .word 48
 addu $2,$17,$18
 rem $3,$2,$16
 seq $3,$3,$5
 slt $4,$0,$19
 and $4,$4,$3
 j $31
 .text

Fig. 10: Invariant code

In the second method, we generate a verifying program specific to the main program. When we
run the main program we just send the the contents of registers and the number designating
which invariant we are at. The verifying processor takes the invariant number, calculates the
result of the invariant, and replies. We use the assembly code for the main program to deduce the
meaning of the various registers. We could then write straight C code for the verifier.

#include "queue_calls.h"

long regs[2][34];
char VQI[]="\004vin";
char VQO[]="\005vout";
long sucmsg[]={4, 1};

int main(void)
{
 long i, length, error, currregs=0;
 for(;;) {
 do {
 currregs = 1 - currregs;
 qread(length,VQI,regs[currregs],0,error);
 } while(error);
 if(length == 0)
 break;
 switch(regs[currregs][1]) {
 case 1:
 qwrite(VQO,sucmsg,0,error);
 printf("1:1\n");
 break;
 case 2:

7

 if(regs[currregs][5] == 55) {
 qwrite(VQO,sucmsg,0,error);
 printf("2:1\n");
 }
 else {
 regs[1 - currregs][1] = 0;
 qwrite(VQO,regs[1 - currregs],0,error);
 printf("2:0\n");
 }
 break;
 default:
 regs[1 - currregs][1] = 0;
 qwrite(VQO,regs[1 - currregs],0,error);
 printf("%ld:0\n",regs[1]);
 break;
 }
 }
}

Fig. 11: A specific verifier

A bit of a problem exists for the first method. The problem is that the verifying program receives
invariant instructions as data. To then attempt to execute those instructions would bring up the
same issues as self-modifying code. To use this method, we would be required to flush caches,
and in general be careful with what we were doing. We decided that the pitfalls of this method
would make it more difficult to implement. Therefore, we chose the second method.

2.7. Using invariants

We maintain two sets of registers in the verifier, so that we can return the old register bank to the
main processor in the event of an error. Also, given the implementation, not all the registers
must be sent to the verifier, but only those that are required for the invariant and possible
rollback.

At this point, setting up the invariant in the verifier requires careful inspection of the assembly
code in the main program. Also, heavy tweaking of the main code is needed to get registers to
have values we want and to have the message filled and send. We hope to be able to automate
much of the code generation for invariant sending and register copying.

In order to get the best performance in the main processor, the main processor should not check
for the reply from the verifying processor immediately after sending the invariant
message. Rather, it should continue execution until it has reached the time for sending another
invariant message. By this time, the reply should have arrived back, and the main processor
need not wait. Then the read can be done, and the roolback if necessary. If no rollback is
necessary, then the new invariant is sent, and execution continues.

3. Conclusion

3.1. Future work

8

Although our program showed how two communicating processors can verify execution, more
work is needed to apply this to a real application.

First, additional logic is needed. We ignore floating point registers, since they were never used.
As real applications have both integer and floating point instructions, a processor needs to
recover floating point registers. We can extend our idea to floating point instructions with little
difficulty. Also, memory recover logic is necessary. Small programs may be able to do all their
work in registers, but any reasonable program goes beyond that. This can be done by keeping a
memory write buffer for written memory values. On each successful evaluation of the invariants,
the memory values in the write buffer are retired to the memory. If an invariants does not hold,
then the memory values are discarded. There can be a coherence problem when there is more
than one main processor, but techniques applied to cache coherence could probably be applied
here. Maintaining the write buffer seems reasonable in a single main processor architecture with
message passing, because the memory values are only refered to by the single main processor.

Second, we need to write a program that generates the verifying program automatically. We
generated the verifying program in an ad hoc manner, which is unproductive and error prone, as
well as inelegant. But we believe that this can be done without to much difficulty compared to
memory value recovery, which will require in-depth modification of SimpleScalar.

3.2. Tidbits

We had some interesting tidbits in this project.

First, the message passing mechanism took a little time to understand. Two communicating
programs do not operate correctly if the writes and reads do not match well. Further, the queue
read code should be written so that it does not assume that there is a message in the
queue. Originally, we had assumed that qread was a blocking read.

Second, we found we could extend the C program with the asm directive so that the program can
be written without modifying the intermediate assembly file by hand. Combined with a script to
modify the assembly code, this technique helped to speed writing programs. However, the asm
directive may cause serious side effects when used incorrectly.

Third, we found several bugs in SimpleScalar. Some them were siginificant and caused our
programs to not operate. One caused early termination of the simulator. Another was a large
memory leak which caused segmentation faults. We could execute the programs correctly after
we received revised versions of SimpleScalar. At this point, there is still an outstanding memory
leak in the simulator.

3.3. Thoughts

This seems like an energy intensive method of verification. At the level we are doing work, there
are more efficeint ways, such as DIVA, or dual processors, with a rollback whenever they don't
agree. Our method could be useful in a couple ways. One is if efficeincy is not important, like

9

computational fabarics. Another is if there were multiple main processors, to amortize the cost
of having a verifier processor.

Next, invariants are not easy to come up with. The invariants reflect the structure of a program
and are difficult to generate automatically. With proof-carrying code, much of the proof is
inherent in the code. The choice of a safe language provides most of the proof of safety as part of
the code itself. Even in proof-carrying code, unusual conditions were written by hand. We also
wrote invariants by hand, but we tried to minimize human intervention as much as we could. A
way must be come up with to lower the amount of human thought needed for invariants.

4. Summary

The decreasing feature size of processors makes it necessary to verify the execution of a
processor. There have been some efforts to address the problem, like DIVA. We approached this
problem by simulating a multiprocessor system in SimpleScalar. We configured the simulator
and wrote application programs running on it. Although our applications were small scale, they
were sufficient to show that a processor can execute instructions and be verified by another
processor. We expect our idea can be applied to a real application if we can rollback memory
values.

5. Acknowledgement

Our work is based on the SimpleScalar multiprocessor extension, which Mark Whitney wrote
and is currently working on. He helped us to configure SimpleScalar and fixed bugs.

References

[1] Todd M. Austin DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design
(Jun. 1999).
[2] Doug Burder, Todd M. Austin The SimpleScalar Tool Set, Version 2.0 (Jun. 1997)
[3] George C. Necula Proof -Carrying Code (Jan. 1997)

